Categories
Exploring Ocean Worlds

NOAA’s Chief Scientist Charts Course Toward a New Blue Economy (IEEE Earthzine, March 2016)

From energy to forecasting capabilities, oceans hold answers to big questions. Image Credit: NOAA

In 2016, I interviewed Dr. Rick Spinrad for IEEE Earthzine; Sprinrad was serving as chief scientist of the National Oceanic and Atmospheric Administration (NOAA), the country’s premier agency on climate science. In May of 2021, President Biden announced that he would be nominating Spinrad to lead NOAA. I thought back on this conversation, where I learned so very much, and thought it would be worth sharing again.

Dr. Richard Spinrad is a busy fellow. As the National Oceanic and Atmospheric Administration’s (NOAA) first chief scientist in 18 years, he’s a man on a mission. Spinrad attends conferences, goes to meetings on Capitol Hill, speaks with industry players, and talks to stakeholders all over the country.

Spinrad speaks passionately about ocean observations, a changing climate, and a new emerging blue economy where information potentially translates to money in the bank.

While a concrete definition of the blue economy is still emerging, it is clear that it represents a healthy marriage between the economic and the sustainable – a shift away from a solely extraction-based approach to one that considers the health of our ocean ecosystems both now and in the future.

When asked for examples of how ocean data can be transformative, the floodgates open. Spinrad and his colleagues say the ocean services community could be riding a wave to incredible opportunities for economic development, from oil spill prevention and cleanup to ocean temperature forecasts, coastal land management and pharmaceutical research.

For example, harmful algal blooms (HABs) or red tides in the Gulf Coast region produce aerosols, which cause major respiratory problems for many people. NOAA is monitoring HABs and collecting copious amounts of data. Spinrad sees this as an opportunity for the research community to develop HAB forecasts, which can be used just like weather forecasts for effective decision-making.

“Like a weather forecast, it doesn’t tell you take an umbrella today; it tells you it will rain today. It’s up to you to decide, will I take an umbrella or not?” he explained.

From there, a third party can use the HAB forecast and build a tailored product specifically for the public health sector to help clinics and hospitals know when to order extra supplies and prep for an influx of patients with severe asthma.

On the West Coast, where shellfish are part of a $260 million dollar aquaculture industry, integrated observations have helped hatcheries monitor corrosive waters caused by ocean acidification, which upwells and moves into the bays and estuaries.

Ocean acidification is the result of excess carbon dioxide from the atmosphere absorbed by the ocean; it is also part of natural cycles. The phenomenon negatively impacts early development of calcifying organisms like clams and oysters, and new research suggests that coral reefs are seriously endangered by corrosive waters as well.

A network of buoys, sensors, and observing tools fall under the umbrella of NOAA’s U.S. Integrated Ocean Observing System (IOOS), which also is connected to regional networks around the globe. By working with NOAA and ocean researchers, shellfish farmers have been able to use IOOS and regional data to adapt their practices and stay in business in spite of changing ocean chemistry as a result of ocean acidification.

This image shows how a pteropod, a small ocean snail many ocean critters rely on for food, is affected by ocean acidification. Image Credit: NOAA Pacific Marine Environmental Laboratory

NOAA’s vastly improved forecasting was evident in 2012 during Hurricane Sandy, which wrought havoc up and down the eastern seaboard, killing 145 people and causing $50 billion in property damage. Spinrad says spot-on forecasts enabled retailers and transportation officials to redirect shipments during the hurricane, allowing goods to make it to the shelves in time for Christmas in 2012. 

To Spinrad, data and predictive services like these are the currency of the realm. While government agencies and research institutions are collecting tremendous amounts of data, given limited available resources, an agency like NOAA cannot develop all these consumer products. However, the data is ready for some enterprising person to turn information into a product that people want and need.

In October 2015, at an xPrize panel on using ocean data to the fullest, Spinrad told the room full of industry leaders that NOAA collects 20 terabytes of data a day. There are, however, cultural obstacles to turning this data into services. According to Spinrad, while other research-based industries like medical, engineering, and tech have been capitalizing on the fruits of their labors for years, the ocean research community may have not fully embraced this way of thinking, yet.

“One might argue that we’re in the same place the engineering community was decades ago and it’s going to take a recognition that by commercializing, by monetizing our research, we are not giving up the posture that we have in basic research,” Spinrad said.

In the early days of engineering, research was driven by a curiosity to understand how things worked, but as that research unearthed discoveries that led to things people wanted, like automobiles and superfast computer processors, there was a public demand for those products. This demand fundamentally transformed engineering in many ways.

He added: “So the examples we’ve just talked about don’t have a lot of pull just yet. There’s not a demand and a pounding on the table for operationalized harmful algal bloom forecasts around the country.”

Spinrad laughing at the MTS/IEEE OCEANS ’15 conference in Maryland. Image Credit: Jenny Woodman

Of course, Spinrad understands the pull of basic or fundamental research. “There’s a romance,” he said. “I don’t have any colleagues that I can really think of who went into oceanography to make big money.” He adds that there is nothing wrong with setting out to make money, but he knows many researchers want to be on the leading edge of fundamental discoveries.

He was lured to oceanography by a failed eighth-grade science project and a fantastic New York City public school teacher. Spinrad set out to build an echo sounder, which he planned to use in the East River in New York City. His teacher put him in contact with an oceanography graduate student at Columbia University and pushed him to move forward with the project.

“Well, it failed miserably and I was hooked,” he said with a characteristic grin. “The teacher could have given me an F. He didn’t. He asked me to explain why I thought it wasn’t working. I was fascinated.”

Spinrad also recalls making his father bring home vials of water from each and every business trip. He would boil the sample down and look at the precipitate, hoping to compare one part of the country to another. Although he now suspects his busy father may have simply added salt to tap water, he was fascinated nonetheless.

It may just be this sort of patient persistence combined with his enthusiasm for science that makes Spinrad the right person to get people to see the enormous untapped potential in ocean research.With half of the anti-cancer drug discoveries coming from marine products and marine organisms, and millions of undiscovered species in our ocean, he says ocean services could see a future similar to that of his colleagues in other fields like engineering.In order to make this happen, society will need to make a substantial commitment to sustained ocean observation. This is an area where he sees dramatic room for improvement.

At an MTS/IEEE OCEANS ’15 panel, Chris Sabine, lab director for NOAA’s Pacific Marine Environmental Lab, spoke about ocean acidification and the huge expanses of ocean for which there are few measurements. Sabine is a leader in ocean acidification research, a phenomenon that was little understood 10 years ago, but presents real concerns today. He warns that ocean acidification “is something happening right now, not something we are predicting for the future, and it will only continue as long as we continue to produce carbon dioxide.”

Sabine expressed a need for incredibly durable instruments able to detect small variations in waters out in the open ocean where pH levels are harder to understand. The coastal waters have much more variation and more detectable levels so sensors can be designed around affordability.
Spinrad concurred: “We’re woefully deficient in our observations and monitoring capacity in the oceans in general.”

Without sustained observations, it may not be possible to understand processes like ocean acidification, because critical data will be missing– data that can be used for modeling what is happening in the carbon system.
Spinrad says there aren’t arguments against sustaining NOAA National Weather Service’s Doplar Radar system every year, because people understand the economic impacts of weather on transportation, commerce, tourism and hospitality. Add in the cost of rebuilding communities after major disasters, and people understand why an investment is needed in weather observation satellites and sensors.

Oceans observations are not at that point yet, but Spinrad sees this emerging blue economy, based on information and predictive services, as the way to get much-needed support for ocean observations.
He emphasizes that researchers have only been looking at something like ocean acidification for a few years. It’s happening everywhere, but they haven’t been able to study it in places like the Arctic, because it isn’t easy to make observations underneath the ice.

Data from more than 3,500 Argo floats are combined with satellite data to provide accurate information to guide research and decision-making. Image Credit: NOAA Pacific Marine Environmental Laboratory

“Imagine if we said that we were going to provide the weather forecast for the lower 48 states by having one temperature measurement every five states. That’s about the density of observations we’ve got from the Argo float system that’s drifting around the world’s oceans,” he argues. “It looks great when you’re looking at it on a map – it’s got all sorts of dots on it, but it’s really not that well-populated.”

Spinrad remains optimistic and sees positive momentum based on the number of young people who are interested and passionate about addressing problems like ocean acidification.

“I’m encouraged as an old guy,” he joked before getting serious. “I’m encouraged to see that the next generation of researchers understands this and is willing to invest in this, and that the federal government and other agencies are willing to put resources towards this as well.”

Ultimately, Spinrad would rather see a substantial investment in sustained and robust observations to address problems now, rather than leave them for future generations. And, a new blue economy may the best hope for making that happen.

Categories
Exploring Ocean Worlds

Exploring Ocean Worlds with SUBSEA

Research aboard E/V Nautilus may assist in the search for extraterrestrial life, as exploration of hydrothermal vent systems informs the design of future science-focused missions across our solar system! In 2018, the SUBSEA (Systematic Underwater Biogeochemical Science and Exploration Analog) team launched their first field program, supported by NASA’s Science Mission Directorate and NOAA’s Office of Ocean Exploration and Research, to explore iron-rich hydrothermal vent systems on Lō‘ihi Seamount off Hawai’i.

As the 2018 expedition wrapped up aboard E/V Nautilus, Lead Scientists Dr. Darlene Lim of NASA Ames and Dr. Christopher German of Woods Hole Oceanographic Institution shared their insights into the future of ocean worlds research with Lead Science Communication Fellow Jenny Woodman of Proteus Science Communication. Catch up on the team’s findings in this conversation, and learn more about the 2019 SUBSEA expedition to explore Gorda Ridge, an active hydrothermal vent system that departs from the convention of black smoker hydrothermal systems, instead emitting clear fluids from the seafloor.

Learn more about the 2018 SUBSEA expedition and the 2019 SUBSEA expedition
Categories
Exploring Ocean Worlds

Ocean of Mysteries

Much of the world’s ocean remains a mystery. Image Credit: Jenny Woodman

It is cold and dark. Creatures here have adapted to live and thrive in this environment, but not us. Once you pass the threshold of the aptly-named twilight zone, around 650 feet, there isn’t enough light to fuel photosynthesis. For every 33 feet of depth gained, the pressure increases by 14.5 pounds per square inch or psi; at a certain point, most organisms with gas-filled spaces, like our human lungs, would be crushed. As you continue to travel farther down, the weight of all the water above and around you presses in, making it impossible to pass a certain point without specialized technology. Most humans will never experience these mysterious depths firsthand. With the aid of submersibles, only three people have ever ventured to the deepest point in the ocean, the Mariana Trench, seven miles below the surface. The challenges of reaching this hadalpelagic zone make it one of the least studied locations on Earth.

I’ve talked to experts, visited their labs and research centers, and watched them at work–often under challenging circumstances. I’ve been to sea and shared the joys of science and discovery alongside bouts of seasickness, equipment malfunctions, and precious time away from loved ones. Few things I’ve experienced in 46 years on this planet compare to going someplace no human has ever gone before, to seeing this other world that exists right here at home.

Until we get out there and start poking around, we have no idea what we might find, but, according to NOAA, “More than eighty percent of our ocean is unmapped, unobserved, and unexplored.

I’m a writer and an educator. I’m also lucky to be able to say this: I am an ocean explorer.

Having spent the last two summers at sea, observing a wildlife survey in National Marine Sanctuaries on the NOAA Ship Bell M. Shimada and supporting robotic exploration of the deep sea aboard Robert Ballard’s Exploration Vessel (E/V) Nautilus, this is what I’ve learned: the Earth’s ocean is vast with many secrets waiting to be discovered.

Just a few months ago, in October, while exploring off the coast of California near Monterey, the E/V Nautilus team was moving their robotic explorer or ROV (which stands for remotely operated vehicle) down the flank of a seamount and out of nowhere they happened upon a brooding site with thousands of octopuses in shimmering water that indicated hydrothermal activity of some sort. No one has ever seen anything on this scale before. This real-life octopus garden is just one example of the discoveries waiting for us in our ocean.

To get a sense of scale of the discoveries still possible, consider the 2010 Census for Marine life. It took a decade to complete and was conducted by 2,700 scientists from over 80 countries, on 540 scientific expeditions, at a cost of $650 million dollars, U.S. They identified over 6,000 potential new species and published more than 2,600 research papers. The project shed light on a variety of  ocean science research–from a white shark cafe in the open ocean to enormous microbial mats, “ranked among Earth’s largest masses of life.”

The census represents a monumental bit of discovery. Yet scientists, like Chris German from Woods Hole Oceanographic Institute (WHOI), think we’ve only scratched the surface. While off the coast of Hawaii last summer, German pointed to the Pacific Ocean, noting that it covers half of the planet and is “woefully unexplored.” He’s been studying hydrothermal vent systems just along the mid-ocean ridge for 30 years. The mid-ocean ridge is a ribbon-like mountain range that runs through the entire global ocean; it is about ten miles wide and 37 thousand miles long.

German estimates that the oceanic community has made discoveries at a rate of one new species every two weeks during his 30-year career. Even exploring as fast as they can go, they’ve only been able to explore about 20 percent of the mid-ocean ridge in three decades. He and his colleagues see opportunities to expand our capabilities here on Earth with emerging technologies in development for future space missions. Essentially, our drive to reach outer space and other ocean worlds will unearth much in unexplored regions of our ocean.

The oceanic and space communities have a great deal to offer each other–from technology development to protocols and training for remote work in extreme environments. In fact, scientists like Julie Huber believe it is time for the oceanic community to be more like NASA. Huber is an expert in marine chemistry and geochemistry at WHOI. Her work examines microbial communities in the deep ocean and, in the not-so-distant future, on other planets.

Huber argues: if NASA can land a scientific laboratory on Mars, then we should be able to do the same here on Earth. Sending scientific vessels to sea or space is no small feat. Ship time and space launches are costly and hard to come by. However, advances in marine robotics, such as Monterey Bay Aquarium Research Institute’s (MBARI) environmental sample processor (ESP) make it possible to do much more with less. When loaded onto an autonomous underwater vehicle, the ESP is a lab-in-a-can, collecting samples and processing them in situ for near real-time oceanographic monitoring. Huber advocates for developing new technologies, similar to MBARI’s ESP, that would allow for analysis of microbes in extreme environments like the deep ocean.

Huber is part of a program called NASA SUBSEA, which stands for Systematic Underwater Biogeochemical Science and Exploration Analog. The SUBSEA team members come from NASA, NOAA, the Ocean Exploration Trust, and several academic centers, including WHOI and Idaho State University.

In August and September, I served as the lead science communication fellow on board the E/V Nautilus during the NASA SUBSEA expedition to the Lōi`hi Seamount off the coast of Hawaii. The SUBSEA team is planning for future remote deep-space exploration of Europa and Saturn’s moon Enceladus as well as crewed missions to Mars and our own moon.

Robotic dives at Lōi`hi offered the opportunity to practice and develop protocols for future missions because today’s ocean explorers work remotely, using tools and methods that will serve space exploration. Someday, when we reach distant ocean worlds, we will deploy robots and explore from the safety of a command center here on Earth, a spaceship, or some other location like a base on the moon or an asteroid.

In order to prepare for those future missions, NASA and their partners gathered a science team at the Inner Space Center at University of Rhode Island’s Graduate School of Oceanography. This team remotely directed our operations on the E/V Nautilus while we were in Hawaii, serving as “mission control” for the expedition. Experiencing time-delays and technical difficulties will enable NASA and their partners to be better prepared for the challenges of deep space exploration.

Conditions at Lōi`hi, which is an active underwater volcano, are similar to what scientists believe exist on these other moons in our solar system.Lōi`hi was selected because the lower temperatures (about 390 degrees F) at these hydrothermal vent sites, called white smokers, are similar to temperatures detected by the Cassini spacecraft at Europa. Using ROVs, we collected rock and water samples so astrobiologists in Huber’s lab at WHOI and geologists from Idaho State could determine what sorts of rock and water interactions are taking place.

In places where sunlight doesn’t reach, there is no photosynthesis for food production. So, organisms like the microbes we observed and collected at Lōi`hi are make a living off of chemical reactions. Scientists are studying these reactions in order to model what could be happening on other planets.

Darlene Lim on board the E/V Nautilus in 2018. Image Credit: Jenny Woodman

To Darlene Lim, NASA Geobiologist and principal investigator for the SUBSEA program, the impetus to explore is an insatiable curiosity about what might be waiting out there. Lim has spent the better part of her career running teams and research in extreme environments on Earth, using them as analogs for future exploration elsewhere in our solar system and beyond.

“We have a sample size of one,” said Lim. “We know that this planet is habitable; we know it is full of life, but what else is out there?”

She adds that we have, at our fingertips, the opportunity to go and in situ understand whether or not life is beyond this planet in our solar system. She smiles and becomes animated when she talks about exploration, making her enthusiasm highly contagious. It’s hard not to get excited about answering questions humans have been asking for all of our brief history on Earth. “What an exciting endeavor that I think we should to take the opportunity to stretch out and accomplish,” said Lim.

But what will it be like when we actually get to one of these remote, distant places in our solar system? Will we find life?

Europa Image Credit: NASA

Imagine you’re flying over an ocean world, not Earth but another. Maybe this is Europa, one of Jupiter’s moons. It is cold and inhospitable. But, scientists know there is an iron core, a rocky mantle, and a salty ocean. How do they know this?

Take a look at the composite image below. There are plumes of water vapor at about 7 o’clock. To identify these plumes, scientists used Hubble’s imaging spectrograph, an instrument which acts like a prism revealing a sort of wavelength fingerprint of the object being observed; this fingerprint makes identification possible. Using this instrument, they were able to capture the silhouette of Europa as it passed in front of Jupiter and identify these plumes of water vapor, rising over 62 miles above the surface. These data aligned with previous observations from Cassini flyovers of Europa and they indicate the presence of an ocean and geologic activity worthy of exploration.

A composite image of Europa shows plumes of water vapor.
Image Credit: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center

When we do get to Europa, there will be no humans on the mission. In the coming years, we are going to overcome incredible engineering obstacles in order to land robotic explorers on a distant icy moon, over 390 million miles from home.

According to German, experts think we can get there by 2033. Then, once we’ve landed on the surface of Europa, it will take another two years to drill ten to fifteen miles through the ice in order to eventually make our way to the ocean floor and transmit images home to Earth–images that these scientists hope will include hydrothermal vents and microbial mats.

Lim said it generally takes 18 to 24 months to be able to draw meaningful conclusions from the fieldwork that took place at Lōi`hi, but she says everything is on track. This means I can’t really tell you exactly what was learned last summer, just yet, but I can attempt to convey why the work is so cool. While we were still at sea, I asked Lim and German why would we should travel 390 million miles to find tiny microbes.

“Any time that humanity has extended itself in that way, along comes other developments. Think social developments–the way we think about ourselves, we organize ourselves, what we think is palatable in terms of the way we treat other people,” said Lim. “It kind of comes hand-in-hand with the ability to think about what is beyond us.”

To German, 390 million miles, when considered alongside the vastness of space, isn’t really that far to travel at all.

“Rather perversely, what’s really exciting about it is only having to go 390 million miles for what we can do is ridiculously close to home,” said German. “And that’s completely new thing in the last decade.”

He goes on to explain that when we thought of looking for life elsewhere in the universe, we traditionally thought about looking for planets with liquid water on the surface and the kind of life forms that we understand from photosynthesis, the dominant form of life on our own planet.

To German, the current generation of ocean exploration work has revolutionized our view of what it takes to make planet habitable. The discovery of seafloor hot springs and cold seeps like those found along the California Borderlands have offered what German describes as a “panoply of different kinds of habitable environments that are often independent of sunlight.”

He’s quick to point out that on our own planet, we know that single-celled life was the only thing in town for the first two to three billion years of our history. “If an alien had ever come searching for life on our planet, there’s a two-to-one chance that all they would have found was an ocean full of microbial life and a barren landscape,” said German.

German believes that we could find microbial life in one or more of about half a dozen candidates in our solar system, in places with an ocean with geologic activity like Europa. German adds with zeal, “It’s closer to home than human-made robots have already been. We don’t even have to go to the limits of human ambition!”

During the 2019 expedition season, the SUBSEA team will be returning to the E/V Nautilus and diving at the Gorda Ridge in late May and early June–you can follow along from home by watching the live-streamed dives. The ridge is another volcanically active area off the coast of Southern Oregon and Northern California with temperatures and conditions similar to Lōi`hi.

The team will do much of the same science–looking at how the rock and water interactions support microbial communities–but they will also introduce communication breaks to simulate planned and unplanned communication drop offs.

It will be wonderful to see what we learn from this work and subsequent projects. To me, what is truly exciting is that ocean exploration here on Earth will eventually give us the tools to visit other ocean worlds. In return, our drive to explore the universe will allow us to better understand our home planet – to locate majestic underwater mountains, identify new medicinal resources, and discover sea creatures that defy imagination. And, after spending time with scientists like Lim, German and the SUBSEA team, I see that the opportunity to extend ourselves beyond the boundaries of what we currently understand about science, technology, engineering, and even ourselves makes a more-than-compelling case for exploration.

Until we get out there and start poking around, who knows what we will find?



Read More

NASA: Ocean Worlds

NASA is preparing for future space missions by exploring underwater volcanoes off Hawaii by Sharon Stirone

Take to the high seas: microbiology labs below the ocean surface by Julie Huber and Christina Preston

Systematic Underwater Biogeochemical Science and Exploration Analog (SUBSEA) by Abby Tabor

Categories
Exploring Ocean Worlds

Running on Empty? A Helpful App Maps Water Stations

36NOAA_MARINE_DEBRIS_2016_DAVID_SLATER_16_0
Free public water fountains and refilling stations help reduce plastic pollution from single use plastic water bottles. Image Credit: NOAA Marine Debris Program

It’s a beautiful day. The sun is out and it’s a perfect, warm temperature outside. With a free afternoon ahead of me, I decide to open up my WeTap app and go hunting for water fountains. The map is empty for a 200 mile radius around me, which I found out last week when I opened the app for the first time since arriving in Arkansas, meaning that either there are absolutely no water fountains to be found or many water fountains and refilling stations remain unmarked in this area. The search becomes a game, like geocaching. It doesn’t take long on my walk around the historic downtown of Rogers to find a public drinking fountain–in fact, I only had to walk two blocks. I take a picture, log the quality, and voila! Now, there is one new fountain on the map.

learn-1
Marine debris floating near Hawai`i. Image Credit: NOAA Marine Debris Program

WeTap is a nonprofit organization dedicated to improving access to clean drinking water via public fountains while reducing dependence on single-use plastic bottles. The founders of the organization created an app for mobile devices that maps public drinking fountains around the United States. With an extensive map already in place, users are able to access the addresses of nearby fountains and map routes to them, making it easy to find free, clean, single-use plastic free water. The fountain profiles within the app include information about the water flow quality, whether there is a dog bowl available, and if there is a water bottle refill station present.

Although the greatest concentration of public water fountains are in cities, fountains exist all over the country. Users can also participate by adding fountains not yet included on the map.

The efforts of this app, and many like it, are to provide resources that make it easy for consumers to reduce their consumption of single-use plastics, a growing environmental problem.

Single use plastics include anything that is made of plastic and used only once before disposal or recycling. The lengthy list of single use items includes household staples such as plastic grocery bags, water bottles, carry-out food containers, straws, cups, utensils, plastic packaging, and plastic wrap.

One of the primary issues surrounding single-use plastics is that they commonly pollute the ocean. It is estimated that 32 percent of plastic packaging worldwide is not properly disposed of; the debris often ends up in our oceans, where much of it remains for thousands of years, slowly degrading into smaller and smaller pieces.

Plastic pollution has an immediate and lasting effect on wildlife; one million marine mammals are killed by marine debris each year. According to NOAA, “Debris ingestion may lead to loss of nutrition, internal injury, intestinal blockage, starvation, and even death.”

STCZHawnArchipelg_MDP_0
Oceanic features can also help trap items in debris accumulation zones, often referred to in the media and marine debris community as “garbage patches.” Image Credit: NOAA Marine Debris Program

The fight against single-use plastics is happening worldwide in the form of public education, fines, and bans.

In 2017, Kenya banned plastic bags, with a $38,000 fine or four years in jail. The U.K. established bans across the country to limit plastic Microbead use in cosmetic and personal care products in January of 2018 and have estimated that the use of plastic bags dropped nearly 9 billion after taxes were introduced in 2015. Seattle is leading the way for cities across the U.S. with bans starting July 1 of this year for both single-use plastic utensils and straws.

With actions such as these, the momentum to limit single-use plastics is increasing around the globe.

Because of the many different plastics and variety of disposal streams, there isn’t one solution to the array of different issues surrounding plastic pollution around the globe. Luckily, there are many ways of approaching the problem, and tools such as WeTap hope to help lead the way.


Malea Saul is the 2018 Science Writing Fellow for Proteus. She received her degree in oceanography from the University of Washington last year and has since been exploring the intersection of science, communication, and education. She is especially interested in how film and storytelling can help transform how we see and investigate the many intricacies of our planet. Follow her on Twitter @SaulMalea.


Read more

Letter to America by Rebecca Altman

American Beauties, Stories on the Plastic Bag by Rebecca Altman

Planet or Plastic? A National Geographic Series

Do open ocean cleanups address our growing ocean trash problem effectively and California’s new straw law! By Jenny Stock for Ocean Currents Radio

Showing where plastic ends up by Plastic Adrift

How does plastic end up in the ocean? By World Wildlife Fund

 

Categories
Exploring Ocean Worlds

What’s in the Water?

Nicknamed the Dragon’s Cave, this hydrothermal vent site on the Lōihi Seamount was covered in microbial mats. Using remotely operated vehicles, scientists on board the E/V Nautilus collected eDNA samples near these mats for NOAA scientists working to develop technologies to better know our ocean. Image Credit: OET/Nautilus Live

All organisms shed cells. Just as you constantly slough skin cells, creatures in the ocean also leave traces behind, from enormous blue whales to deep sea corals to tiny microbes living at hydrothermal vents. These cells contain DNA, the molecule responsible for carrying genetic information for all living things.

Remains of an organism’s genetic material can tell scientists about the overall health of the ecosystem and the inhabitants. Environmental DNA or eDNA is an emerging area of study that may help researchers to better know the ocean and its inhabitants. eDNA is a DNA sample collected via an environmental medium such as soil or water; by examining the genetic traces left behind in that medium, scientists can study creatures without direct contact. This has been extremely useful for studying species that are particularly difficult to collect samples from such as Orcas and deep sea corals.

In the ocean, eDNA collection relies on water sampling in close proximity to specimens of interest. The sloughed cells from a species like a deep sea coral are pulled in with water samples, and those cells contain small amounts of DNA from the corals nearby. By amplifying sets of specific DNA sequences, coral biologists can use the small amount of eDNA captured in the water sample to identify the coral by its genetic fingerprint. This non-invasive technique could replace physical sampling for any species for which this technique is validated.

Coral sclerites imaged with a scanning electron microscope. Image Credit: NOAA NW Fisheries Science Center

Deep sea coral biologists have long been limited by the fact that physical specimens must be collected to make a species-level identification and taking coral samples, even prudently, is somewhat invasive. To make a species-level identification, the ultrastructure of the coral skeleton, specifically the sclerites, must be visualized by a scanning electron microscope. To minimize sampling, coral biologists have been searching for a new way to accurately identify corals to the species level.

Carol Stepien on board the Reseach Vessel Tatoosh deploying a device for sampling water for eDNA in the Olympic Coast National Marine Sanctuary. Image Credit: NOAA/Kim Andrews

Today, eDNA sampling is changing the way corals and other sea life are identified, and this technology may prove invaluable in future research. With only five percent of the world’s ocean explored, to some it is a race against time to learn as much as we can before some biodiversity is lost forever.

Carol Stepien is the Ocean Environment Research Division leader at NOAA’s Pacific Marine Environmental Laboratory in Seattle. Her Genetics and Genome Group is working to develop technologies that will help researchers in the future to assess oceanic communities and how, or if, they are being impacted by changes in the ocean using eDNA.

“We know almost nothing about creatures in the ocean,” said Stepien, adding that whole groups of species are being discovered, sometimes daily. “What we know is a drop in the bucket about who is in the ocean, especially when you get into the deep sea.”

To help expand that limited knowledge, she envisions building large DNA databases for species identification.

Stepien’s lab is collecting eDNA samples from Axial Seamount, an active underwater volcano in the NE Pacific Ocean, and from methane seeps along the Oregon and Washington Coast. They are focused on invertebrate communities such as clams and chemosynthetic organisms; her team is collaborating with other researchers who are looking at microbes. Ultimately Stepien hopes to develop genetic markers for DNA sequences that would aid identification through a massive collaboration between government, academia, and scientific institutions.

“We’re in the beginning of a scientific revolution of how to do this,” said Stepien. “It’s going to take a lot of different researchers working together — communicating, publishing, and developing these applications. We’re looking at developing highly diagnostic, fast and inexpensive tools for the future.”

Stepien thinks within ten years we will see something similar to Monterey Bay Aquarium Research Institute’s environmental sample processor (ESP), but with the capacity for eDNA monitoring, using drones and satellite transmission. The ESP instrument is basically a high-tech lab in a can that can be loaded onto an autonomous vehicle and deployed to collect and process samples without returning to land.

We need better records of creatures and organisms in the ocean and eDNA is an exciting tool because you don’t need to disturb the habitats or the sea life, according to Stepien. She sees a future where technology and scientific ingenuity are going to allow us to understand what is happening in the ocean in real time — problems like ocean acidification and hypoxia could be studied in situ without disturbing the ecosystem.

Her enthusiasm for the subject is contagious when she starts to talk about what is possible today and what we’ll be able to to in the future. “You’re able to start to focus and solve problems I never even dreamed of when I was in grad school,” Stepien said. “It is very fun and exciting as a scientist — I’m having such a good time working on this.”


Jenny Woodman, Proteus founder and executive director, is a science writer and educator living in the Pacific Northwest; she is a 2018 lead science communication fellow for the Exploration Vessel Nautilus. Follow her on Twitter @JennyWoodman.

Dr. Amber Hale is an assistant professor of biology at McNeese State University in Lake Charles, Louisiana. She uses molecular biology techniques in non-traditional model organisms. She is passionate about STEM education and science communication in her community.


Read more

Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity by Philip Francis Thomsen and Eske  Willerslev

Self-driving robots collect water samples to create snapshots of ocean microbes by University of Hawai‘i and MBARI

The Power of ‘Environmental DNA’ For Monitoring Whales by GrrlScientist

Why We Need to Protect Deep Sea Corals Now by Sandra Brooke

Deep-Sea Coral Habitat by NOAA FIsheries

Deep-Sea Coral Protections Storymap by NOAA Deep Sea Coral Research & Technology Program Data Portal

Deep Sea Corals 101

Deep sea corals are colonial organisms made up of many individual organisms called polyps, working in concert to survive. Each individual has a job to perform in order for the entire colony to grow and thrive. While most people are familiar with colorful warm water corals found in shallow, tropical waters, these only represent about 15 percent of the world’s corals, according to the California Academy of Sciences’ Curator of Invertebrate Zoology and Geology, Gary Williams.

California Academy of Sciences’ Curator of Invertebrate Zoology and Geology Gary Williams, holding a coral sample in the E/V Nautilus wet lab. Image Credit: OET/Nautilus Live

The other 85 percent of corals are deep sea or cold water corals, which are hard to study because it isn’t easy to get to the deep ocean with any frequency. Cold water corals differ from their shallow water counterparts in many ways, but one major distinction is that they do not rely on a symbiotic relationship with the photosynthetic algae, zooxanthellae (pronounced zoo-uh-zan-thella), that live inside warm water corals.

In the upper layers of the water column where the sun’s rays penetrate, most organisms like zooxanthellae rely on photosynthesis for food production. The algae barters food for rent in the relationship with their coral homes.

The sun’s light cannot reach the deep waters where cold water corals live, so these corals must eat nutrients found in debris that falls from the shallower layers of the ocean – this mixed debris is often called marine snow. Due to the limited amount of marine snow reaching the seafloor and the harsh environment of the deep sea, these corals are slow growing, but can be extremely long-lived. Bamboo corals have been aged to be more than 450 years old!

Environmental or eDNA is a DNA sample collected via an environmental medium such as soil or water; by examining the genetic traces left behind in that medium, scientists can study creatures without direct contact. During the 2016 and 2017 E/V Nautilus expedition seasons, water samples were taken in close proximity to deep sea coral species of interest in Cordell Bank and Greater Farallones National Marine Sanctuaries. Corresponding physical samples were taken as well. With both the eDNA sample and the physical specimen, coral biologists worked to validate coral-specific eDNA protocols.

Biologists first amplify and sequence a set of DNA regions of interest from the eDNA sample, then these sequences are compared to corresponding sequences from the physical specimen. This creates a species-specific “DNA fingerprint.” Repeating this process for many species allows scientists to build a library of coral DNA fingerprints, enabling future biologists to confidently use eDNA samples to identify corals without the need for physical sampling.

 

 

Categories
Exploring Ocean Worlds

Ocean Exploration Fueled by Girl Power

This photo essay-letter was created on board the Exploration Vessel Nautilus during the 2018 Lōihi Seamount Expedition, a joint project between Ocean Exploration Trust, NASA, NOAA, and a number of academic institutions. The mission used this underwater volcano off the coast of Hawai`i as an analog for future space exploration to distant ocean worlds. Click on photo captions to scroll through the images and read more detailed bios of these phenomenal women working in science, technology, engineering, arts, and math fields.

Dear 2nd Graders,

I really enjoyed speaking with your class this morning. It is always fun to tell people about the work we are doing on board the Exploration Vessel (E/V) Nautilus, a 211-foot science vessel outfitted for exploring the ocean floor with robots and studying what is happening in our planet’s ocean.

After we ended our talk with you, one of your comments stuck with me. Your teacher asked me to speak about what girls do on our ship, adding that you all thought only boys could be engineers and that made me a little sad.

As a matter of fact, I couldn’t sleep for quite some time even though it was 4:30 in the morning here off the coast of Hawai`i. But, I woke up with a plan: I’d gather all the girls on our ship (there are a lot of us) and take a photo for you. I thought maybe if you saw how many girls are out here doing exciting work, you might start to see how many important things get done by both boys and girls.

But there was one really big problem…

All the girls working on the Nautilus are very, very busy. Eighteen members of the 31-person science team on the Nautilus are women. We serve in all roles — from engineering to communications, from the very highest leadership position down to our student interns. There is no place on the Nautilus where women do not work incredibly hard.

I went to the back deck of the ship where Wendy, Jess, and Antonella were busy repairing our robots, Hercules and Argus. Without these robots, (we also call them remotely operated vehicles or ROVs) we wouldn’t be able to travel to the ocean floor to learn about volcanoes, octopuses, sharks, and creatures no one has ever seen before. As ROV pilots, a big part of their job is maintaining and fixing the ROVs – Wendy, Jess, and Antonella are engineers, so they are really good at what they do!

I ducked around the corner and up the stairs, following Mary and Nicole, but it turned out they were busy too. A camera needed fixing, and as video engineers, they needed to tackle the job. Cameras are very important to the work happening on the Nautilus; they are like eyes on the robots and they help the pilots to safely move around; cameras also record all the amazing images from places humans can’t safely go. As a retired journalist and video engineer, Mary has lots of experience to help guide and train Nicole who just graduated from college.

Our science data team — Leigh and Megan were also quite busy. They spent part of the afternoon brainstorming how to manage the thousands of images and samples being gathered with each dive, and they met with expedition leaders to share their ideas about how to do even more with the limited space available for so many scientists on the ship.

Then, I went to the wet lab, but another member of the science data team, Brianna, was busy organizing the equipment the science team uses after Hercules collects those samples and brings them back to the ship; one of her jobs is to prepare those specimens for scientists all over the country to study back on dry land.

I ran over to the social deck, just in time to see Elizabeth rushing off to her lab. She had to place a bottle of seawater in an incubator, which is like a small oven. She wanted to test how long it will take her to process the samples Hercules will bring up to the ship from the volcano.

I was sure I’d be able to wrangle Sam and Nicole, but as part of the leadership responsible for the success of this and future expeditions, they were busy coordinating the hundreds of items that need addressing each day.

Speaking of the people who help this ship run smoothly, Thais and Martyna are officers in charge of running the ship so all this amazing science can happen. Today, Martyna took a crew out on a small boat to inspect the hull, and Thais makes sure everyone on the ship is safe at all times.

My friends Ariel and Mugdha were also busy, shooting video to help tell the story of science, ocean exploration, and marvelous feats of engineering.

Even I had to stop and take a break from writing this letter to you; Amy and I were needed in the studio where you saw us this morning. We had to talk to a group of people gathered at a museum in San Francisco – we showed them pictures and answered their questions just as we answered yours.

My last stop on this adventure was the lounge where Darlene was sitting at her laptop on a big leather sofa. As principle investigator for this project, her days are really long – she’s working even when she looks like she might be relaxing. When I found her, she was getting ready to go on NASA TV and talk about the work we are doing; two million people tuned in to watch her today!

I’m writing this letter because I’d hate to think that there are any young girls in your class who think it isn’t cool or possible for them to build robots or rockets, and I’d hate to think that there are boys who think they shouldn’t do the thing they dream about doing, whatever it may be.

Following science out to sea has taken me to some pretty extraordinary places. Image Credit: Jenny Woodman

And, if you don’t want to be a scientist or engineer, but you love the sea creatures — if you dream about what it might be like explore the ocean, I have a secret for you: not everyone involved studying the ocean is a scientist or engineer. I’m a writer. My job is telling true stories about this work so people can better understand the world we live in. Folks like me — anthropologists, painters, teachers, filmmakers, chefs, and all sorts of people play a big part, making amazing things happen every day for organizations like the Nautilus!

Thanks for asking us such smart questions. I hope you will stay curious, have fun and keep exploring!

Jenny


Jenny Woodman, Proteus founder and executive director, is a science writer and educator living in the Pacific Northwest; she is a 2018 lead science communication fellow on board the Exploration Vessel Nautilus. In 2016, she wrote her masters thesis on women in STEAM and continues to explore this topic in her work. Follow her on Twitter @JennyWoodman.


Read more

The Women ‘Computers’ Who Revolutionized Astronomy by Jenny Woodman

Standing on the Shoulders of Giants: Women and a Brief History of Computing by Jenny Woodman

Standing on the Shoulders of Giants: The Stellar Works of Women by Jenny Woodman

The Seamstress And The Argonaut Shell by Lauren J. Young

Seeing Is Believing: How Marie Tharp Changed Geology Forever by Erin Blakemore

Categories
Exploring Ocean Worlds

Underway

Europa Galileo
This image of Jupiter’s Europa moon was captured by NASA’s Galileo spacecraft in the late 1990s; scientists are studying deep sea volcanoes on Earth in preparation for future exploration to places like Europa where they expect to find oceans and hydrothermal activity beneath the moon’s surface. Image Credit: NASA/JPL-Caltech/SETI Institute

On August 21, a team of scientists, engineers, and students arrived in waves, loaded with personal gear and equipment for deep sea exploration off the coast of Hawaii. The mission, a joint project with NASA, NOAA, Ocean Exploration Trust and a number of academic institutions, is to explore the Lōihi Seamount with remotely operated vehicles, or robots.

Conditions at this underwater volcano are similar to what scientists believe exist on moons in the outer regions of our solar system. Experts from NASA’s Systematic Underwater Biogeochemical Science and Exploration Analog (SUBSEA) team think it is likely that oceans and hydrothermal activity exist beneath an icy crust on Saturn’s Enceladus and Jupiter’s Europa.

Robotic dives at Lōihi also offer the opportunity to practice and develop protocols for future missions. Someday, when we reach distant ocean worlds, it is unlikely that humans will be able to enter into these hostile environments; it is more likely that they will deploy robots and explore from the safety of their ship or some other location, much like ocean explorers do today.

In order to develop protocols to guide those future missions, NASA and their partners have gathered a science team at the Inner Space Center at Rhode Island Graduate School of Oceanography; this team will remotely oversee and direct operations on the Exploration Vessel (E/V) Nautilus here in Hawaii. The work will serve as an analog for expeditions where astronauts will communicate across great distances. Experiencing delays and possible technical difficulties first-hand on Earth will enable NASA and their partners to be better prepared for the challenges of deep space exploration.

Back on board the Nautilus last Monday, there were hugs and laughs as those who had sailed on the ship reunited and newcomers were introduced. We were eager to get going, but Hurricane Lane had other plans. The storm intensified and the Coast Guard ordered all ships over a certain size out of the port of Honolulu. Nicole Raineault, vice president of exploration and science operations for the Ocean Exploration Trust shared the news that expedition leaders and the ship’s captain, Pavel Chubar, didn’t feel the science team would be safe on board the ship during the storm. The Nautilus was going to ride out the weather in safer waters north of Maui, but the seas would be rough nonetheless – it was not going to be a place for non-professional mariners.

On Wednesday August 22, we repacked our gear, secured science equipment on the ship, and offloaded in Honolulu. As stores and restaurants closed all over Waikiki where we were staying, it was surreal to see the images of an immense storm heading our way while tourists poured in and out of the shops. The island chain is no stranger to powerful storms, but the last major hurricane occurred in 1992; Hurricane Iniki caused $3.1 billion in damage.

Lane ISS
Hurricane Lane from the International Space Station. Image Credit: NASA

Lane was expected to hit Hawaii on Friday or Saturday, so we stocked up on food and water in case the storm disrupted power and transportation. (Experts recommend your family’s disaster supplies include one gallon of water per person, per day as well as enough food, medicine, and creature comforts like activities for little ones to last at least two weeks. For more on how to prepare your family for disaster visit here and here.)

The slow-moving storm never made landfall on O’ahu, but caused catastrophic flooding to the Big Island, dumping over 50 inches of rain in just a few days.

On August 26, we were transported to the Nautilus via water taxi and immediately set off as teams worked to prepare equipment for operations on Monday morning. The seas weren’t quite as calm as most would like and many napped and stared at the horizon in an effort to quell uneasy stomachs. Most over the counter motion sickness medicines cause drowsiness (and mine was no exception — although the box was labeled “less-drowsy,” it would be more apt if it read “may cause light coma”).

The E/V Nautilus underway, heading towards the Kilauea lava flow. Image Credit: Jenny Woodman

We’re now our way to the Kilauea lava flow, a slow-moving eruption that has caused extensive damage to the Big Island since early spring. Data from the previous Nautilus expedition, Mapping Pacific Seamounts, included signals that look like little bubbles, which they’d never seen before.

Chris German is a senior scientist at Woods Hole Oceanographic Institute and leader of the science data team for this expedition. “It is a process we’ve not had the chance to study previously,” German added as he explained that they are returning to the same spot in order to see if those mysterious bubbles are still present.

He and his team are eager to determine an ideal location future dives. The Nautilus team uses sonar mapping technology to both enhance our understanding of the processes occurring on the ocean floor and to accurately identify where to deploy the robots for exploration. “This may be another kind of hydrothermal system nobody’s ever seen before,” German added with a grin.

We expect to be able to see the flow area from a distance after breakfast Monday morning, and we’re looking forward to launching our first dive operation on the Lōihi Seamount at midnight (HTC) Tuesday morning. Whenever the robots are deployed, the video feed is live-streamed to viewers all over the world at www.nautiluslive.org. 


Jenny Woodman, Proteus founder and executive director, is a science writer and educator living in the Pacific Northwest; she is a 2018 lead science communication fellow on board the Exploration Vessel Nautilus. Follower her on Twitter @JennyWoodman.


This piece was updated on August 27.

Read more

Discovering Ocean Worlds by Jenny Woodman
Ocean Worlds by NASA Jet Propulsion Laboratory

Categories
Exploring Ocean Worlds

Discovering Ocean Worlds

Copy of NAUTILUS DISTANCE-147
The Exploration Vessel (E/V) Nautilus is a 211 foot former East German “fishing boat” fully outfitted for scientific exploration. Image Credit: OET/Nautilus Live

I stood on the sidewalk swaying on solid ground, a phenomenon dubbed “dock rock” or “land sickness” by those who’ve spent time on boats. I looked over my shoulder at the big blue and white ship from which I had just disembarked with my usual grace and style. High tide made the gangway incredibly steep; I lost my footing and slid all the way down with my gear to the chorus of onlookers gasping.

After being at sea, a combination of exhaustion, adrenaline, and homesickness fueled a multitude of feelings. With a lump in my throat, I thought I might never get the chance to do something so unbelievably cool again. I had just spent two weeks with truly amazing people exploring the ocean floor – with robots.

Last summer, I served as a science communication fellow on board the Oceanographer Bob Ballard’s Exploration Vessel (E/V) Nautilus.

Our expedition took place in Cordell Bank National Marine Sanctuary. The 1,296 square mile sanctuary had nearly doubled in size since receiving its designation as a protected place in 1989. Prior to the expedition, the scientists responsible for managing the sanctuary lacked the resources to fully explore and understand what lived on the ocean floor, miles below the surface. We traveled along the Continental Shelf, exploring underwater canyons and steep cliff faces, collecting video footage and samples that were sent to hundreds of researchers around the country.

These observations were aided by two remotely operated vehicles (ROVs), or robots, named Hercules and Argus. The ROVs work in tandem, tethered to the ship and each other. Argus absorbs the ship’s movements and shines bright lights down on Hercules as it performs delicate maneuvers and operations below. Hercules is outfitted with multiple high definition cameras, a Kraft Predator arm, and a host of sampling tools that aid the Nautilus team in their mission to explore the biology, geology and archeology of wild and unexplored places in the ocean.

Whenever the robots are deployed the video is live streamed all over the world, allowing students, scientists, and fans to explore with the team. This technology takes humans to locations too costly, distant, and dangerous for in-person observations like active underwater volcanoes and hydrothermal vents.

Using the Nautilus’s technology and expertise in Cordell Bank, NOAA scientists were able to identify new deep sea habitats teaming with life. There were jellies, sharks, skates, and over 40 species of rockfish, swimming among deep sea corals and sponge communities – it was a remarkable experience from beginning to end. And, it turns out that last summer was not the last time I’d set foot on the Nautilus.

From August 20 to September 13, I’ll rejoin Ballard’s Corps of Exploration as lead science communication fellow for a joint mission with NASA, NOAA, and various academic centers. The expedition is part of a multi-year SUBSEA (Systematic Underwater Biogeochemical Science and Exploration Analog) Research Program.

We’ll be exploring the Lō’​ihi Seamount – an active underwater volcano off the coast of Hawaii. The hydrothermal venting and geologic features found at Lō`ihi (sounds like low-ee-hee) are thought to be similar to what scientists expect to find on other, distant, ocean worlds. We will be testing equipment and protocols as well as collecting samples and video to learn more about this geologically active and unique environment.

NASA is watching how the oceanographic community works in unusual environments in order to develop protocols for space exploration. When astronauts eventually make it to distant planets, it is unlikely that they will be able to land their spacecraft and walk on the surface right away. Using robotic technologies similar to what is used in ocean science, those astronauts will conduct their observations from the relative safety of their spacecraft – just like many ocean explorers here on Earth.

In order to allow a very large team of scientists and collaborators to participate from land, most of our dives will run from midnight to 4 p.m., Hawaiian time (HST). You can follow these dives online at www.nautiluslive.org and updates will be posted regularly on the Nautilus’s Twitter feed.

I’ll be standing watch from midnight to 4 a.m. and noon to 4 p.m. – moderating the questions coming in from the audience and helping translate the complexities of this work whenever the robots are deployed.

Last summer, I had no idea what to expect as I nervously put on my headset and sat down at my station for my first watch shift. Over the subsequent hours and days, I  learned about the science and biology of the deep ocean and the technology and teamwork that took us to this otherworldly place. I saw my first octopuses in the wild, graneledone boreopacifica, who brood their eggs for 4 years, and I learned that skate egg pouches are called mermaid’s purses. As I prepare to head back out, the work is more familiar, but I’m just as eager to see new and exciting wonders.

I hope you’ll come along and explore this blue planet with us!


Jenny Woodman, Proteus founder and executive director, is a science writer and educator living in the Pacific Northwest. Follow her on Twitter @JennyWoodman.


Read more

Why protect 600,000 square miles that most people will never see? by Jenny Woodman

E/V Nautilus 2018 Expedition Season Summaries

Mapping the Deep: The Extraordinary Story of Ocean Science by Robert Kunzig

Notes from the Nautilus by Jenny Woodman

 

Categories
Arctic Change

Arctic Worries

George Divoky frets–with good reason. In 2016, CNN Correspondent John D. Sutter called him the man who is watching the world melt. The description is as distressing as it is apt.

George sends us regular dispatches from a small field camp on Cooper Island, about 25 miles east of Utqiaġvik, where he has studied a colony of nesting Mandt’s Black Guillemots for the last 44 years. Since his work began in 1975, the research has morphed into one of the longest-running studies of seabirds, sea ice, and climate change.

Guillemots look like small penguins headed off to a fancy party replete with ice sculptures and all-night dancing. Unlike other seabirds that migrate out of the region seasonally, they live out over the frigid waters year-round, only returning to land to breed and fledge their young–this makes them an excellent indicator of how climate change is impacting the Arctic.

Weather delayed the start of this research season in early June. While warm temperatures in the Arctic have made headlines in recent months, unusually late snow and ice kept the guillemots from reaching their nesting boxes until mid-June; the first egg was laid on June 24.

His communications are tinged with an effort to buoy spirits–I’m guessing his own more so than ours. This week, the bad news came first: a 29-year-old female died. He wrote that she had been banded during the first George Bush administration. (While many humans rely on a simple Gregorian calendar, George’s memories appear to be synchronized according to a timeline rooted firmly in geopolitics.)

Bad news was followed with happy; two siblings from the 2014 cohort returned and recruited partners for breeding.

Otherwise, it’s been a stormy week on the island. On July 20, he wrote that the wind was finally dying down. A bad week for the infrastructure, the camp’s weather station was blown over and part of the heavy-duty WeatherPort tarp separated from the frame, which caused a number of things to get wet. On Wednesday he saw record high rainfall for that date.

Egg laying hit an all-time low this year, with fewer breeding pairs than any previous year.

He’s asking questions about how changing ice conditions will impact these seabirds – his seabirds. In his most recent field report, he spoke at length about the relationship between the guillemots and nearshore sea ice. The location of the sea ice impacts how far parents will have to fly to access suitable prey for their chicks. Increased travel time means greater energy expended by parents – for seabirds that live predominantly out in open waters, it’s all about balancing resources and energy. The presence or absence of sea ice combined with the temperature of the ocean waters impacts the availability of Arctic Cod, the small nutritious fish the guillemots prefer.

George hopes the slowly departing nearshore sea ice will keep ideal prey in foraging range for the seabirds. He wrote, the cod is “urgently needed for the colony to reduce its current population decline.”

David Douglas is a research wildlife biologist for United States Geological Survey (USGS) Alaska Science Center; he and George are frequent collaborators. This week he emailed the MODIS images displayed above and wrote that Cooper Island was pretty well surrounded until July 16 when the persistent ice immediately around the island broke up and melted.

Studies like George’s will help scientists to better understand the ramifications of long-term warming and less sea ice for wildlife in the region. Impacts to wildlife will directly affect the lives of the people who depend on subsistence fishing and hunting for survival.

Warming Arctic conditions have persisted with 2018 reaching record lows for sea ice extent, according to a report published by NOAA and University of Alaska Fairbanks’s International Arctic Research Center.

Late ice formation and early retreat in the Chukchi and Bering Seas impacted local communities by making travel for subsistence hunting and fishing dangerous and, at times, impossible. Storm damage and erosion was worsened by exposed shorelines, left unprotected by a lack of sea ice. Island villages and coastal communities experienced flooding and property damage as well. You can read more about the storm impacts here and here.

The report attributes late and minimal ice coverage to warmer temperatures, particularly over the last four years. Increased temperatures combined with stronger storms helped break up weaker ice.

In 2018, there was less sea ice in the Bering Sea than any year since 1850, when commercial whalers began recording this data. Experts agree, loss of sea ice is a result of climate change. Continued warming creates a feedback loop where warming temperatures melt ice; without a reflective snow and ice covering, the ocean absorbs more of the sun’s warming rays and temperatures continue to rise.

sea-ice
Sea ice since 1850. Image Credit: NOAA and University of Alaska Fairbanks International Arctic Research Center (UAF-IARC).

As for future winters, what can people expect to see if warming continues at current rates?

“Communities need to prepare for more winters with low sea ice and stormy conditions. Although not every winter will be like this one,” concludes the report, “there will likely be similar winters in the future. Ice formation will likely remain low if warm water temperatures in the Bering Sea continue.”

And for George’s seabirds? How many birds will successfully fledge this year? How many will return next?

We’ll just have to wait and see.


This piece is part of an ongoing series titled Arctic Change centered around George Divoky’s 44th field season studying Black Guillemots, sea ice, and climate change on a remote Arctic island off the coast of Alaska. To donate and support Divoky’s work on Cooper Island, visit the Friends of Cooper Island website.


Read More

Historic Low Sea Ice in the Bering Sea by Kathryn Hansen for NASA Earth Observatory

Arctic Sea Ice a Major Determinant in Mandt’s Black Guillemot Movement and Distribution During Non-Breeding Season By G. J. Divoky, D.C. Douglas, and I.J. Stenhouse

Melting Arctic Sends a Message: Climate Change Is Here In a Big Way by Mark Serreze

The First Frontier: Creating a Climate Displacement Fund for Displaced Alaska Communities By Wen Hoe

Categories
Exploring Ocean Worlds Sea Sentries

Exploring an Ocean Wilderness

Chase-180705-9255
A rare Nazca Booby sighting brought joy to the team of wildlife observers on the NOAA Ship Bell M. Shimada. Image Credit: Julie Chase/ACCESS/NOAA/Point Blue

Precious moments are abundant at sea, but, like most things, there are challenges. Gorgeous sunsets and getting close to wild creatures most people will never witness also comes with long hours, bouts of seasickness, and being away from loved ones.

California Group Director for Point Blue Conservation Science Jaime Jahncke went on his first science expedition in 1994; it was a cruise to assess anchovy stocks off the coast of Peru where he grew up. “Being at sea is fantastic. You can see things that no one else can see like a breaching whale or a rare bird,” said Jahncke. “But if you are sick it is pretty awful because there’s nothing you can do to escape the thing that’s making you sick.”

We’re off the north-central coast of California on the NOAA Ship Bell M. Shimada for a marine mammal and seabird survey. A team of scientists has spent the last week logging wildlife sightings and collecting water and biological samples as part of a long-term effort to monitor National Marine Sanctuary ecosystems.

On the last day of this cruise, members of the wildlife observation team spoke a little bit about this work and why they think protected places like our National Marine Sanctuaries are important. The following is written in their own words, which have been lightly edited for length and clarity.

Jan Roletto

She is chief scientist and research coordinator for Greater Farallones National Marine Sanctuary; Roletto has been going out to sea regularly since the late 90s.

I miss my husband, dog, and cats, but I live near where I work so you’re never really that far from home. That is one of benefits of place-based monitoring; with species-based monitoring, you have to go to where the animals are.

My job is really diverse. I like being able to put the pieces of the puzzle together for an unknown question. As research coordinator, my job is to find researchers who are doing work relevant to the sanctuary – people like Carina Fish who are studying the impact of ocean acidification on deep sea corals.

Long-term monitoring data isn’t exciting – it’s doesn’t get the “oohs and aahs” but it is really important. You can’t identify what’s really special or different without long-term monitoring data. For example, we can do rapid damage assessments because we have this data. Long-term monitoring is like a savings account. You put the data aside – you put a little away and when the need arises you have it. We wouldn’t be able to talk about climate change, about long-term change, if we didn’t have that long-term monitoring data.

It’s satisfying to have all this data when there’s an event like an oil spill incident – a leaky vessel or an accident – and be well prepared to respond. We’ve used ACCESS and Sanctuary data so it’s satisfying to be able to say, “This is what it looked like before; this is what it looks like now; and, this is what it will take to make to restore it to that previous state.”

Sanctuaries are important because U.S. National Marine Fisheries Service protects populations; sanctuaries protect habitats. You can’t have good populations of whatever is out there without homes – can’t have one without the other. We take care of the grocery store and the apartment building and fisheries takes care of the things that live there.

Kirsten Lindquist

Lindquist is the ecosystem monitoring manager for the Greater Farallones Association (GFA); she’s the birder for this cruise and has been going out to sea for 18 years.

I think the long days with no breaks (in terms of working 10 or 30 days straight) are hard. You get some intermittent weather breaks, but nothing you can plan for. You do get tired.

I love being in the ocean wilderness and the extreme environment — seeing all the different faces of it. On shore, people go to national parks and they can be there and experience them in a way that people don’t have the chance with oceans 40-plus miles off shore. I think if people did, they would understand why [National Marine Sanctuaries] are so special and why they should be protected.

Dru Devlin

Devlin is a research associate for Greater Farallones Association and wildlife observer on this cruise; she has been working on programs at sea like ACCESS since 2005.

The break in the normal routine is challenging. I love to come out here and then it’s great to get back home, but when I’m home, I can’t wait to be back out here.

It’s physically hard standing in weather and sun for the long hours – the change in diet and exercise too, but I love it. I miss my family, but I think it’s important for my son to see his mom do something that’s important to her and something that is important to others.

I like being part of a team and part of something that contributes to the knowledge base. Being out on the ocean is a touchstone of who I am – it inspires me to keep doing this work. It’s gratifying over the years to see what we’ve contributed to the knowledge base and how much more there remains to do.

Marine sanctuaries protect valuable resources like the biodiversity of life we see here – from the rich basis of life, the phytoplanktonic stuff all the way up to the largest mammals on Earth. If we don’t study it, we won’t know what we have – hopefully others see the value in that.

Taylor Nairn

She is the data manager for Greater Farallones Association and the data logger in this expedition; this is Nairn’s fourth year at sea.

Every cruise is different. The weather is pretty hard, but you can get through it and that feels good. The lack of privacy is hard too – after a while I need to turn inward, but it’s also good to be forced to get out of it.

I love the sense of adventure and independence. The sea is one of the last wildernesses and getting to experience that is really magical. Wild spaces have intrinsic value. True wild spaces and ecosystems are valuable in and of themselves.

Science Team ACCESS Cruise July 2018
ACCESS Cruise Science Team, July 2018. Image Credit: Julie Chase/ACCESS/NOAA/Point Blue


Jenny Woodman, Proteus founder and executive director, is a science writer and educator living in the Pacific Northwest. Follower her on Twitter @JennyWoodman.